Solve For The Value Of X In Each Figure.

Solve for the value of x in each figure.

✒️POWER THEOREMS

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{DIRECTIONS}:}

  • Solve for the value of x in each figure.

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{ANSWERS}:}

 \qquad \large \rm 1) \; x \approx 10.67

 \qquad \large \rm 2) \; x = 6

 \qquad \large \rm 3) \; x = 16

 \qquad \large \rm 2) \; x = 18

 \qquad \large \rm 5) \; x \approx 4.33

 \qquad \large \rm 6) \; x = 13

••••••••••••••••••••••••••••••••••••••••••••••••••

 \largenderline{\mathbb{SOLUTIONS}:}

Number 1:

» Solve for x using the Chord-Chord Power Theorem.

  •  (3)(x) = (4)(8)

  •  3x = 32

  •  \frac{3x}3 = \frac{32}3 \\

  •  x \approx 10.67

 \therefore The value of x is about 10.67

•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

Number 2:

» Solve for x using the Tangent-Secant Power Theorem.

  •  x^2 = (3)(3+9)

  •  x^2 = (3)(12)

  •  x^2 = 36

  •  \sqrt{x^2} = \sqrt{36}

  •  x = 6

 \therefore The value of x is 6

•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

Number 3:

» Solve for x using the Tangent-Secant Power Theorem.

  •  (4)(x) = 8^2

  •  4x = 64

  •  \frac{4x}4 = \frac{64}4 \\

  •  x = 16

 \therefore The value of x is 16

•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

Number 4:

» Solve for x using the Secant-Secant Power Theorem.

  •  (2 + x)(2) = (4 + 6)(4)

  •  (2 + x)(2) = (10)(4)

  •  4 + 2x = 40

  •  2x = 40 - 4

  •  2x = 36

  •  \frac{2x}2 = \frac{36}2 \\

  •  x = 18

 \therefore The value of x is 18

•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

Number 5:

» Solve for x using the Secant-Secant Power Theorem.

  •  (15)(x) = (5 + 8)(5)

  •  (15)(x) = (13)(5)

  •  15x = 65

  •  \frac{15x}{15} = \frac{\,65\,}{15} \\

  •  x \approx 4.33\\

 \therefore The value of x is about 4.33

•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••\:•••

Number 6:

» Solve for x using the Chord-Chord Power Theorem.

  •  (5)(x - 5) = (2)(20)

  •  5x - 25 = 40

  •  5x = 40 + 25

  •  5x = 65

  •  \frac{5x}5 = \frac{65}5 \\

  •  x = 13

 \therefore The value of x is 13

••••••••••••••••••••••••••••••••••••••••••••••••••

(ノ^_^)ノ


Comments